Example problem: Factorial ANOVA

A researcher is interested in what affects the amount of candy that is given out during Halloween. She randomly selects 15 5-year-olds, 15 10-year-olds and 15 15-year-olds and randomly assigns them to wear either a funny, cute or scary costume. Each participant is sent to the same randomly selected house in a middle income neighborhood to trick-or-treat and the number of pieces of candy was recorded for each participant.

	picot	-					
		Type of H					
		Funny	Cute	Scary	Marginal Means		
	5 years old	12	11	16	Funny = 10.867 Cute = 6.067 Scary = 13.467		
q		12	8	18	5 = 12.933 $10 = 10.133$	15 = 7.333	
	earg	14	8	17			
	5 ye	15	9	12	Marginal Sums		
	-	16	9	17	$Funny = 163 \qquad Cute = 91 \qquad S$	Scary = 202	
	q	14	6	11	5 = 194 10 = 152	15 = 110	
Chil	s ol	14	2	10			
Age of Child	ear	15	7	12	Grand Mean = 10.13333		
	10 years old	13	7	13	Total = 456		
		11	5	12	$\Sigma Y^2 = 5514$		
	q	5	4	14			
	s ol	5	6	12			
	ear	5	3	13			
	15 years old	4	1	9			
	,	8	5	16			
		Cell Means		5			
		Funny	Cute	Scary			
	5	13.8	9.0	16.0			
	10	13.4	5.4	11.6			
	15	5.4	3.8	12.8			
		Cell Sums					
		Funny	Cute	Scary			
	5	69	45	80			
	10	67	27	58			
	15	27	19	64			
				rd Deviations			
		Funny	Cute	Scary			
	5	1.789	1.225	2.345			
	10	1.517	2.074	1.140			
		1 5 1 7	1.004	2 500			

On the next page, perform a Factorial ANOVA and show all 7 hypothesis testing steps.

2.588

1.517

15

1.924

1. State Null Hypothesis:

i. $h_0: \mu_{\text{funny}} ___ \mu_{\text{cute}} ___ \mu_{\text{scary}}$ (Main effect for Costume) ii. $h_0: \mu_{\text{age5}} ___ \mu_{\text{age10}} ___ \mu_{\text{age15}}$ (Main effect for Age)

 $h_0: \mu_{\text{age5funny}} __ \mu_{\text{age5cute}} __ \mu_{\text{age5scary}} __$

iii. $\mu_{age10funny} _ \mu_{age10cute} _ \mu_{age15scary}$ (Interaction Effect) $\mu_{age15funny} _ \mu_{age15cute} _ \mu_{age15scary}$

2. Alternative Hypothesis:

- h_1 : At least 2 costume μs are different
- $h_1: At \ least \ 2 \ Age \ \mu s \ are \ different$
- iii. h_1 : At least 2 Cell μ s are different

3. Decide on α (usually .05): $\alpha =$ _____

4. Decide on type of test (distribution; *z*, *t*, F, etc.)

Questions to ask:

- a. How many groups do you have?
 - i. Only 2 than you can use a t-test.
 - ii. Are the groups arranged within multiple independent variables?
 - iii. More than 2 groups/IVs \rightarrow ANOVA \rightarrow F distribution
- b. Can we treat the scores as independent (e.g. they are NOT from the same person, they are NOT matched subjects, they are NOT related subjects, etc.)?
 - If Yes, then continue with the between groups ANOVA
 - If No, STOP you may need to perform a repeated measures ANOVA
- c. Can we assume a normally distributed sampling distribution?
- In other words, do we have 20+ degrees of freedom for the WG source of variance? If yes, then continue.
 - If no, do not continue the test cannot be performed.
- d. Do the groups have homogenous variances?

 $F_{MAX} = \frac{s_{\text{Largest}}^2}{s_{\text{Smallest}}^2} = \underline{\qquad}$, if this value is smaller than 3 proceed.

5. Find critical value & state decision rule(s)

- a. For F_{cv} you need both $df_{Effect} = #groups_{(effect)} 1$ and $df_{WG} = N #cells$. Table D.3 F_{cv} (df_{effect}, df_{WG}) , if $F_{a} > F_{cv}$ reject the null hypothesis
- b. So there are 3 costume groups therefore $df_{Costume} = -1 = -1$ and $df_{WG} = -1 = 36$. Table D.3 $F_{cv}(-) = -$, if $F_o > -$ reject the null hypothesis

c. So there are 3 age groups therefore $df_{Age} = -1 =$ and $df_{WG} = -1 =$ = 36. Table D.3 F_{cv} (______) = _____, if $F_o >$ ______ reject the null hypothesis

d. So there are 9 cells for the interaction therefore $df_{Interaction(Costume^*Age)} = ____ - 1 =$ _____ and $df_{WG} = ____ - 1 = 36$. Table D.3 $F_{cv} (___, ___) = ____$, if $F_o >$ _____ reject the null hypothesis

6. Calculate test

• You can use the Deviation Approach but it will take you a long time, so for the sake of our collective sanities let's just focus on the computational approach (but the deviation approach should achieve the same results

$$SS_{\text{costume}} = \frac{\sum (\sum A)^2}{bn} - \frac{T^2}{abn} = \frac{163^2 + \underline{^2 + \underline{\phantom$$

$$SS_{S/AB} = \sum Y^2 - \frac{\sum (\sum AB)^2}{n} = 5514 - 5390.8 = ___$$
$$SS_{Total} = \sum Y^2 - \frac{T^2}{abn} = 5514 - 4620.8 = ____$$

Source	SS	df	MS	F
Costume				
Age			<u> </u>	
AB	112		28	
S/AB		36		
Total				

- 7. Apply Decision Rule(s)
 - Costume: Since, _____ (i.e. observed value) _____ (i.e. >, <) _____ (critical value), ______ (i.e. DO or DO NOT) reject the null hypothesis.
 Age: Since, _____ (i.e. observed value) _____ (i.e. >, <) ______ (critical value), _____ (i.e. DO or DO NOT) reject the null hypothesis.

 - Interaction: Since, _____ (i.e. observed value) ____ (i.e. >, <) _____ (critical value), _____ (i.e. DO or DO NOT) reject the null hypothesis.